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An Efficient Pseudocodeword Search Algorithm for
Linear Programming Decoding of LDPC Codes

Michael Chertkov, Member, IEEE, and Mikhail G. Stepanov

Abstract—1In linear programming (LP) decoding of a low-den-
sity parity-check (LDPC) code one minimizes a linear functional,
with coefficients related to log-likelihood ratios, over a relaxation
of the polytope spanned by the codewords. In order to quantify LP
decoding it is important to study vertexes of the relaxed polytope,
so-called pseudocodewords. We propose a technique to heuristi-
cally create a list of pseudocodewords close to the zero codeword
and their distances. Our pseudocodeword-search algorithm starts
by randomly choosing configuration of the noise. The configuration
is modified through a discrete number of steps. Each step consists
of two substeps: one applies an LP decoder to the noise-configu-
ration deriving a pseudocodeword, and then finds configuration of
the noise equidistant from the pseudocodeword and the zero code-
word. The resulting noise configuration is used as an entry for the
next step. The iterations converge rapidly to a pseudocodeword
neighboring the zero codeword. Repeated many times, this pro-
cedure is characterized by the distribution function of the pseu-
docodeword effective distance. The efficiency of the procedure is
demonstrated on examples of the Tanner code and Margulis codes
operating over an additive white Gaussian noise (AWGN) channel.

Index Terms—Error-floor, linear programming decoding, low-
density parity-check (LDPC) codes.

I. INTRODUCTION
LDPC CODES, BELIEF PROPAGATION, AND
LINEAR PROGRAMMING

E consider an LDPC code (cf. Gallager [2]) defined
by some sparse parity-check matrix, H = {H,;;a =
1,..., M;i = 1,...,N}, of size M x N. A codeword

o = {o; = 0,1;5¢ = 1,---,N} satisfies all the check

constraints: Voo = 1,...,M,> . Hyio; = 0 (mod 2). We
discuss the practical case of finite N and M, as opposed to
the N, M — oo (thermodynamic) limit for which Shannon
capacity theorems were formulated [3]. The codeword is sent
over a noisy channel. To make our consideration concrete, we
consider the additive white Gaussian noise (AWGN) channel.
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(Notice that all the discussions and results of this paper can be
easily generalized to other linear channel models.) Corruption
of a codeword in the AWGN channel is described by the
following transition probability:

P(z|o) x HGXP[—ZSZ(J% — ;)% (1)

7

where z is the signal measured at the channel output and 252 is
the signal-to-noise ratio (SNR) of the code, that is traditionally
denoted as E./Ng. The maximum-likelihood (ML) decoding
corresponding to the restoration of the most probable pre-image
o’ given the output signal z

arg max P(z|o”) (2)

is not feasible in reality since its complexity grows exponen-
tially with the system size.

LP decoding was introduced by Feldman, Wainwright, and
Karger [1] as a computationally efficient approximation to the
ML decoding. Following [1], let us first notice that (2) can be
restated for the AWGN channel as calculating

arg grllelrllj <Z(1 — 2:17,;)0§> 3)

K2

where P is the polytope spanned by the codewords. Looking for
o’ in terms of a linear combination of all possible codewords of
the code, 0,,: 6/ = ), A\,0,, where A\, > Oand ) A, =1,
one finds that ML turns into a linear optimization problem. LP
decoding proposes to relax the polytope, expressing ¢’ in terms
of a linear combination of the so-called local codewords, i.e.,
codewords of trivial codes, each associated with just one check
of the original code and all the variable nodes connected to it.
We will come to the formal definition of the LP decoding [1]-[9]
later after discussing the belief propagation (BP) decoding of
Gallager [2]-[6].

The BP, or sum—product, algorithm of Gallager [2] (see also
[4]-[6]) is a popular iterative scheme often used for decoding
of the LDPC codes. For an idealized code containing no loops
(i.e., there is a unique path connecting any two bits through a
sequence of other bits and their neighboring checks), the sum-
product algorithm (with sufficient number of iterations) is ex-
actly equivalent to the so-called maximum a posteriori proba-
bility (MAP) decoding, which is reduced to ML in the asymp-
totic limit of infinite SNR. For any realistic code (with loops),
the sum-product algorithm is approximate, and it should actu-
ally be considered as an algorithm for solving iteratively cer-
tain nonlinear equations, called BP equations. The BP equations
minimize the so-called Bethe free energy [10]. (The Bethe free
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energy approach originates from a variational methodology de-
veloped in statistical physics [11], [12].) Minimizing the Bethe
free energy, that is a nonlinear function of the probabilities/be-
liefs, under the set of linear (compatibility and normalizability)
constraints, is generally a difficult task.

BP decoding becomes LP decoding in the asymptotic limit
of infinite SNR. Indeed in this special limit, the entropy terms
in the Bethe free energy can be neglected and the problem be-
comes minimization of a linear function under a set of linear
constraints. The similarity between LP and BP (the latter one
being understood as minimizing the Bethe Free energy [10]) was
first noticed in [1] and it was also discussed in [7]—[9]. Stated in
terms of beliefs, i.e., trial marginal probabilities, LP decoding
minimizes the Bethe self-energy

E=3" ba(0a) > 0i(1 = 22;)/k; “)

a oq 1€EQ

with respect to beliefs b, (0, ) and under certain equality and
inequality constraints. Here in (4) k; is the degree of connec-
tivity of the i-th bit; o, is a local codeword, o, = {o;|i €
a, >, Hy;o; = 0(mod 2)}, associated with the check a. The
equality constraints are of two types, normalization constraints
(beliefs, as probabilities, should sum to one) and compatibility
constraints

Va: Y ba(oa) =1 5)

> baloa) ©6)

oo \o;

ViV 3 i : bi(o;) =

respectively where b;(o;) is the belief (trial marginal proba-
bility) to find bit ¢ in the state o;, and the check belief, b, (0, ),
stands for the trial marginal probability of finding bits, which
are neighbors of the check «, in the state a. Also, all the be-
liefs, as probabilities, should be nonnegative and smaller than or
equal to unity. Thus, there is the additional set of the inequality
constraints

0 S bi(gi)7ba(0a) S 1. (7)

II. INTRODUCTION II PSEUDO CODEWORDS, FRAME ERROR
RATE AND EFFECTIVE DISTANCE

As it was shown in [1] the LP decoding has ML certificate,
i.e., if the pseudocodeword obtained by the LP decoder has only
integral entries then it must be a codeword, in fact it is the code-
word given back by ML decoder. If LP decoding does not de-
code to a correct codeword then it usually yields a noncode-
word pseudocodeword with some number of nonintegers among
the beliefs b; and b,,. These configurations can be interpreted as
mixed state configurations consisting of a probabilistic mixture
of local codewords.

An important characteristic of the decoding performance is
frame error rate (FER) calculating the probability of decoding
failure. FER decreases as SNR increases. The form of this de-
pendence gives an ultimate description of the coding perfor-
mance. Any decoding to a noncodeword pseudocodeword is a
failure. Decoding to a codeword can also be a failure, which
counts as a failure under ML decoding. For large SNR, i.e., in
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the so-called error-floor domain, splitting of the two (FER vs
SNR) curves, representing the ML decoding and an approximate
decoding (say LP decoding) is due to pseudocodewords [13].
The actual asymptotics of the two curves for the AWGN channel
are FERML ~ exp(—dML . 82/2) and FERLP ~ exp(—de .
52 /2), where dy1, is the so-called Hamming distance of the code
and the dpp is the effective distance of the code, specific for the
LP decoding. The LP error-floor asymptotic is normally shal-
lower than the ML one, di,p < dur,. The error floor can start at
relatively low values of FER, unaccessible for Monte Carlo sim-
ulations. This emphasizes importance of the pseudocodewords
analysis.

For a generic linear code performed over a symmetric
channel, it is easy to show that the FER is invariant under
the change of the original codeword (sent into the channel).
Therefore, for the purpose of FER evaluation, it is sufficient to
analyze the statistic exclusively for the case of one codeword,
and the choice of zero codeword is natural. Then calculating the
effective distance of a code, one makes an assumption that there
exists a special configuration (or maybe a few special configu-
rations) of the noise, instantons according to the terminology of
[14], describing the large SNR error-floor asymptotic for FER.
Suppose a pseudocodeword 6 = {5; = b;(1);i = 1,...,N}
corresponding to the most damaging configuration of the
noise (instanton), &i,st, is found. Then finding the instanton
configuration itself (i.e., respective configuration of the noise)
is equivalent to maximizing the transition probability (1) with
respect to the noise field, &, taken at & = 0 under the condition
that the self-energy calculated for the pseudocodeword in the
given noise field z is zero (i.e., it is equal to the value of the
self energy for the zero code word). The resulting expression
for the optimal configuration of the noise (instanton) is

&Zi(}’i

Tinst = = )
232;0;
and the respective effective distance is

(Zz 51‘)2 )
207

This definition of the effective distance was first described in
[15], with the first applications of this formula to the LP de-
coding discussed in [7] and [9]. Note also that (8), (9) are remi-
niscent of the formulas derived by Wiberg and coauthors in [16]
and [17], in the context of the computational tree analysis ap-
plied to iterative decoding with a finite number of iterations.

®)

dLP =

III. SEARCHING FOR PSEUDOCODEWORDS

In this section, we turn directly to describing an algorithm
which allows one to find efficiently pseudocodewords of an
LDPC code performing over AWGN channel and decoded by
LP. Once the algorithm is formulated, its relation to the intro-
ductory material, as well as partial justification and motivation
will become clear.

The Pseudocodeword Search Algorithm

« Start: Initiate a starting configuration of the noise z(%).

Noise measures a deviation from the zero codeword and
it should be sufficiently large to guarantee convergence of
LP to a pseudocodeword different from the zero codeword.
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¢ Step 1: The LP decoder finds the closest pseudocodeword
o¥) for the given configuration of the noise

{bELP,k)(Ui)7 b&LP,k)(UQ)}
RETCEHUTRNNEN))

satisfying (5)—(7)}

min

= ar
& {b1 (‘71 )7ba ("'a

o) = b (1)

where the self-energy is defined according to (4). In the
case of degeneracy one picks any of the closest pseu-
docodewords.

« Step 2: Find y(*), the weighted median in the noise space
between the pseudocodeword %) and the zero codeword

ok) )P Uz(k)
2 )DF (Uz‘(k))T

o Step 3: If y*) = y(*=1 then k, = k and the algorithm
terminates. Otherwise go to Step 2 assigning z(*+1) =
y*) + ¢ for some very small e (+¢ prevents decoding into
the zero codeword, keeping the result of decoding within
the erroneous domain.)

y*+) is the output configuration of the noise that belongs to
the error-surface surrounding the zero codeword. (The error-sur-
face separates the domain of correct LP decisions from the do-
main of incorrect LP decisions.) Moreover, locally, i.e., for the
given part of the error-surface equidistant from the zero code-
word and the pseudocodeword a(*+), y(¥+) is the nearest point
of the error-surface to the zero codeword.

The algorithm is schematically illustrated in Fig. 1. We re-
peat the algorithm many times picking the initial noise config-
uration randomly, however, guaranteeing that it would be suffi-
ciently far from the zero codeword so that the result of the LP
decoding (first step of the algorithm) is a pseudocodeword dis-
tinct from the zero codeword. Our simulations (see discussions
below) show that the algorithm converges, and it does so in a rel-
atively small number of iterations. The convergence of the algo-
rithm is translated into the statement that the effective distance
between (™) and the zero codeword does not increase, but typ-
ically decreases, with iterations. Once the algorithm converges
the resulting pseudocodeword belongs to the error-surface. This
observation was tested by shifting the instanton configuration of
the noise correspondent to the pseudocodeword toward the zero
codeword and observing that the result of decoding is the zero
codeword. The effective distance of the coding scheme is ap-
proximated by

y(k’) -

(Zi UE]%))Z
PP (ng*)y

where the minimum is taken over multiple evaluations of the al-
gorithm. It is not guaranteed that the noise configuration with the
lowest possible (of all the pseudocodewords within the decoding

(10)

drp ~ min
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Fig. 1. Schematic illustration of the pseudocodeword-search algorithm. This
example terminates at k. = 3. The point 1/2 = (1,...,1)/2 is shown to
illustrate that if one draws a straight line through 1/2, such that it is perpendic-
ular to the straight line connecting 0 = (0,...,0) and 6(*), then the straight
line must go c-approximately through z(¥+1). [We are thankful to Referee A
for making this useful 1/2-related observation.]

scheme) distance is found after multiple evaluations of the al-
gorithm. Also, we do not have a formal proof of the fact that,
beginning with a random (%), our algorithm explores the entire
phase space of all pseudocodewords on the error-surface. How-
ever our working conjecture is that the right-hand side (RHS)
of (10) gives a very tight (if the number of attempts is suffi-
cient) upper bound on the actual effective distance of the coding
scheme.

IV. EXAMPLES

In this section, we demonstrate the power of the simple pro-
cedure explained in the previous section by considering three
popular examples of relatively long regular LDPC codes.

A. The Tanner [155, 64, 20] Code of [18]

For this code N = 155 and M = 93. The Hamming distance
of the code is known to be dy, = 20. The authors of [7]
reported a pseudo codeword with d = 16.406. The lowest
effective distance configuration found as a result of our search
procedure is dpp =~ 16.4037. These two, and some number of
other lower lying (in the sense of their effective distance) con-
figurations, are shown in Fig. 2. The resulting frequency spectra
(derived from 3000 evaluations of the pseudocodeword-search
algorithm) is shown in Fig. 3. Notice that the pseudoweight
spectrum gap, defined as the difference between the pseu-
doweight of the noncodeword minimal pseudocodeword with
smallest pseudo-weight and the minimum distance [19], is
negative for the code ~ —3.5963. Thus, the LP decoding per-
formance is strictly worse than the ML decoding performance
for SNR — oo.

B. The Margulis Code [20] With P = 7

This code has N = 2. M = 672 bits. The set of four
noise configurations with the lowest effective distance found
by the pseudocodeword-search algorithm for the code is shown
in Fig. 4. The lowest configuration decodes into a codeword
with the Hamming distance 16. A large gap separates this
configuration from the next lowest configuration corresponding
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Fig. 2. The eight lowest configurations found by the pseudocodeword-search algorithm for the [155, 64, 20] code. The typical number of evaluations required to

reach a stopping point is 5 + 15.

distribution function

0.8 -

0.4+

10

d

Fig. 3. The frequency spectrum (distribution function) of the effective distance constructed from 3000 attempts of our pseudocodeword search algorithm for the

[155,64,20] code.

to a pseudocodeword that is not a codeword. Since the pseu-
doweight spectrum gap is positive in this case, the LP decoding
approaches the ML decoding performance for SNR — oo.

The frequency spectra, characterizing the performance of the
pseudocodeword-search algorithm for this code, is shown in
Fig. 5.
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Fig. 4. The four lowest noise configuration found by our pseudocodeword search algorithm for the Margulis p = 7 code of [20]. The typical number of evaluations

required to reach a stopping point is in between 10 and 20.
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Fig. 5. The frequency spectrum (distribution function) of the effective distance found through multiple attempts of the pseudocodeword-search algorithm for the
Margulis p = 7 code. The figure is built on 250 evaluations of the pseudocodeword-search algorithm.

C. The Margulis Code [20] With P = 11

This code is N = 2 - M = 2640 bits long. We have a rela-
tively small number of configurations (30) here because it takes
much longer to execute the LP decoding in this case. Some 30 to
60 steps of the pseudocodeword search are required for a typical
realization of the algorithm to reach a stopping point. The four
lowest configurations are shown in Fig. 6. Obviously, with lim-
ited statistics one cannot claim that the noise configuration with
the lowest possible effective length has been found. All stop-
ping point configurations found here correspond to pseudocode-
words. (The Hamming distance for this code is not known, while
the pessimistic upper bound mentioned in [21] is 220.)

V. CONCLUSION AND DISCUSSION

Let us discuss the utility of the pseudocodeword search al-
gorithm proposed in this manuscript. The algorithm gives an
efficient way of describing the LP decoding polytope and the

pseudocodeword spectra of the code. It approximates the pseu-
docodeword and the respective noise configuration on the error-
surface surrounding the zero codeword, corresponding to the
shortest effective distance of the code. Our test shows that the
algorithm converges very rapidly. (Even for the 2640 bits code,
the longest code we considered, it typically takes only 30 to 60
steps of the pseudocodeword search algorithm to converge.) As
aaforementioned, this procedure applies to any linear channel.
One only needs to make modifications in (8), (9), (10), and also
in the basic equation of Step 2.

One would obviously be interested in extending the pseu-
docodeword search algorithm to other decodings, e.g., to find
the effective minimal distance of the sum-product decoding.
We observed, however, that a naive extension of this procedure
does not work. The very special feature of the LP-case is that
the noise configuration found as a weighted median of the zero
codeword and a pseudocodeword (+¢, as in the Step 3 of the
pseudocodeword search algorithm) is not decoded into the zero



CHERTKOV AND STEPANOV: EFFICIENT PSEUDOCODEWORD SEARCH ALGORITHM

1519

o N 69.0179
<~2_'_'__ T e Tt e T T T e T e~ 8- - . T~ T e e
[ A o~ ______ L . o & _
[q\l 0 ° ° o ° ® o ® .
3 66.8514
o . . T ee
2 == O~ — — — e - .
;3 1l oo -0———-e- -5 -3 oo - e . -—-
0 :% ® % % hd [y o Ve o % e
63.7624
_~2 ______ .__.___.__l__“____._ ____________ oP e® 6 e T " "
S * __

[q\] o o ° 0 d * ® °, o 8°

0

56.5858
"\27777‘77‘7.’ 77777 * 7;7.7777.7777"777777;.7777"’
P ] Do o o Lo ____._

N é 2. ® o . °« ° 8 [ ° ®

1 1 I | | 1

0 500 1000 1500 2000 2500

bit label, (=0, ..., 2639

Fig. 6. The four lowest noise configurations found by our pseudocodeword search algorithm for the Margulis p = 11 code of [20]. The typical number of the
pseudocodeword-search iterations required to reach a stopping point is in between 30 and 60.

codeword. This allows us to proceed with the search algorithm
always decreasing the effective distance or at least keeping it
constant. It is not yet clear if this key feature of the LP decoding
is extendable (hopefully with some modification of the weighted
median procedure) to iterative decoding. This question requires
further investigation.

Even though the direct attempt to extend the LP-based
pseudocodewords-search algorithm to the sum-product de-
coding failed, we still found an indirect way of using these
LP results to analyze the sum-product decoding. The most
damaging configuration of the noise found within the pseu-
docodeword-search procedure becomes a very good entry point
for the instanton-amoeba method of [14], designed for finding
instanton configurations (most damaging configurations of the
noise) for the case of the standard iterative decoding. This hy-
brid method works well, sometimes resulting in the discovery
of pseudocodewords (of the respective iterative scheme) with
impressively small effective distance. We attribute this fact
to the close relation existing between the LP decoding and
the BP decoding [1], [7]-[9]. Some preliminary results of
this hybrid analysis are discussed in [22]. Summarizing, the
LP-based pseudocodeword search algorithm, complemented
and extended by the instanton-amoeba method of [14], pro-
vides an efficient practical tool for the analysis of effective
distances, most damaging configurations of the noise (instan-
tons) describing the error-floor, and their frequency spectra for
an arbitrary LDPC code performing over a linear channel and
decoded by LP decoding or iteratively.

After the original version of the manuscript was submitted
for publication, we have learned about some important new
results concerning reducing complexity of LP-decoding [23],
[24]. It is also appropriate to mention here the most recent pub-
lications exploring possibilities of LP-decoding improvement
[25], [26]. These new techniques and ideas combined with
the pseudocodeword-search algorithm open interesting new
opportunities for exploring and improving decoding schemes
of even longer LDPC codes.
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